1739

Synthesis and Complexation Behaviour of an Effective Octadentate Complexone 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrakis[methylene(methylphosphinic acid)]

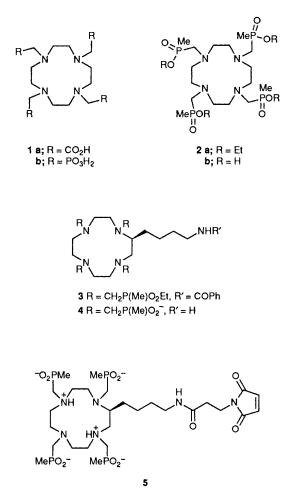
Christopher J. Broan, ^a Karl J. Jankowski, ^a Ritu Kataky, ^a David Parker, * ^a Amanda M. Randall ^b and Alice Harrison ^b

^a Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK

^b MRC Radiobiology Unit, Chilton, Didcot OX11 0RD, UK

The title ligand and a C-functionalised analogue have been prepared; the ligand is very strongly basic [$pK_a LH^+$, $LH^{2+} > 14$ (298 K)] and forms remarkably stable complexes with yttrium and calcium.

The ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1a (dota) is well known to form thermodynamically stable complexes with a wide range of divalent and trivalent metal ions.1 In particular it forms the most stable complexes known (in aqueous solution) with calcium and the rare earths² and lanthanoids.³ A C-functionalised analogue has been linked to monoclonal antibodies and may be radiolabelled with ⁹⁰Y to form a kinetically stable complex in vivo.^{4,5} The gadolinium complex of dota is an effective paramagnetic contrast agent for magnetic resonance imaging.⁶ Both these applications are dependent upon the respective complexes being resistant to acid (or cation) catalysed decomplexation. Using alkylphosphinic acid donors instead of carboxylates, protonation on oxygen in both the ligand and the monoanionic complexes will occur under more strongly acidic conditions.⁷ In addition, a phosphinic acid oxygen is a better σ donor than a carboxylate for cations of high charge density. Given the relative ease of structural variation of the aminoalkylphosphinic acids, a new and versatile class of complexing agents may be expected.


Reaction of 1,4,7,10-tetraazacyclododecane with paraformaldehyde and MeP(OEt)₂ in tetrahydrofuran (THF) yielded the tetraester **2a** as a mixture of the four possible diastereoisomers, at least two of which may be observed by ³¹P NMR spectroscopy [δ_P (CDCl₃) major 51.9, 51.8, 51.6]. Acid hydrolysis (6 mol dm⁻³ HCl; 18 h; 125 °C) yielded the tetraacid **2b**,[†] as the hydrochloride salt. Analysis of pH-metric titration data yielded protonation constants of 8.12 and 3.66

⁺ Selected data: **2a** m/z (DCI) 653 (M⁺ + 1), 652 (M⁺), 533; $\delta_{\rm C}$ (CDCl₃) 13.44 (d, $J_{\rm CP}$ 91 Hz), 16.42 (d, $J_{\rm CCOP}$ 5 Hz), 54.18 (CH₂N ring), 54.30 (d, $J_{\rm CP}$ 110 Hz, CH₂P), 59.82 (CH₂O, d, $J_{\rm CP}$ 6 Hz, PMe). **2b** m/z (FAB) 540 (M⁺); $\delta_{\rm P}$ (D₂O, pD 14) 39.2; $\delta_{\rm C}$ (D₂O, pD 1)

^{14.86 (} J_{CP} 94), 50.70 (CH₂N), 51.64 (J_{CP} 118). [**2b**·**Y**]⁻ m/z (FAB) 626, 625; δ_P (D₂O, pD 6) 44.4; δ_c (D₂O) 51.41 (d, J_{CP} 96 Hz, CH₂P); 46.80, 46.65 (CH₂N); 11.20 (d, J_{CP} 98 Hz); δ_H (pD 6.5) 1.33 (12H, d, J_{PCH} 14 Hz), 2.25 (4 H, d, J 13.3 Hz, ring CH),

^{2.45 (8}H, dd + dd, CH₂P), 3.35 (12 H, m, NCH + NCH₂). 3 m/z (DCI) 829 (M⁺ + 1); δ_P (CDCl₃) 52.3–50.4 (m); δ_C (CDCl₃) 164.8 (CONH); 132.5 (PhCCO); 128.3, 125.5, 124.7 (Ph); 60.5 (br, CH₂O); 59.2, 58.2, 58.1, 58.0, 56.8, 56.3, 55.9, 55.0, 54.7, 51.7, 51.0, 49.7 (CH₂N of diastereoisomers); 40.89 (CH₂NHCO); 31.0, 29.6, 29.5, 26.4 (CH₂C of diastereoisomers); 19.2 (CH₃CH₂, d, J_{CCOP} 5 Hz); 16.1 and 15.9 (d + d, J_{CP} 91 Hz, CH₃P-diastereoisomers).

 $[\]frac{5}{m/z}$ (FAB) 763 (M⁺ + 1); $\delta_{\rm H}$ (D₂O, pD 1) 6.64 (2H, s), 4.0–2.60 (27H, m), 2.26 (2H, t, *J* 7.2 Hz, CH₂CO), 1.8–1.0 (6H, br, CH₂C), 1.21 (12H, *J*_{CHP} 14 Hz).

Table 1 Protonation and binding constants for **1b** [298 K; H₂O; I 0.1 mol dm⁻³ (Me₄NNO₃)]^{*d*,*c*}

$pK_1 > 14.5^a$ (11.4) ^b	$pK_2 > 14^a$ (10.0) ^b	p <i>K</i> ₃ 8.12 (6.70) ^b	р <i>К</i> 4 3.66	log <i>K</i> _{MgL} 13.0	log <i>K</i> _{MgLH} 8.06
log <i>K</i> _{CaL} 18.1	log <i>K</i> _{CaLH} 6.52	log <i>K</i> _{YL} 25.1		log <i>K</i> _{NaL} 3.90	

^a Determined using ³¹P NMR. ^b Determined using ³¹P NMR in the presence of Na⁺. ^c Determined by pH-metric titration followed by data analysis with SCOGS2 then SUPERQUAD. ^d In comparison **1a** gives pK_a values of 12.09, 9.68, 4.55 and 4.13 [298 K; *I* 0.1 mol dm⁻³ (Me₄NNO₃)],¹ and **1b** gives 13.7, 12.2, 9.28, 8.09, 6.12, and 5.22.⁸

(Table 1), consistent with successive protonation on nitrogen and oxygen. Measurement of the ³¹P NMR shift of **2b** as a function of pH (Fig. 1*a*) revealed that further ligand protonations were occurring both above pH 14 and below pH 2.5. Even measurements at 60 °C [$I > 5 \mod dm^{-3} (Me_4NNO_3)$] failed to pinpoint accurately the upper pK_a values (Fig. 1*b*). Using NaOH instead of Me₄NOH to adjust the base concentration, observable pK_a values of 11.4 and 10.0 were defined. Given that **2b** forms a weak complex with sodium (log K_{ML} = 3.90, Table 1), such a depression of the ligand protonations was expected. These protonation values may be compared with those obtained with the analogous tetrakis(phosphonic

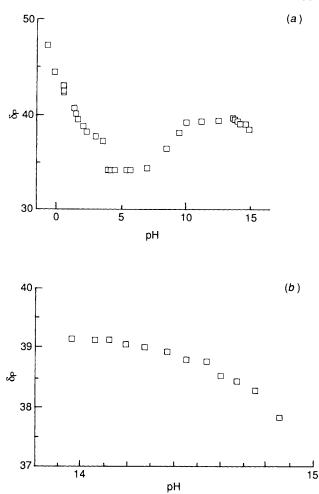


Fig. 1 Variation of 31 P NMR shift of 2b with pH: (a) at 298 K; (b) at 333 K (Me₄NOH)

acid) **1b**, for which values of 13.7 and 12.2 were measured [298 K, $I0.1 \text{ mol } \text{dm}^{-3} (\text{Me}_4\text{NNO}_3)$] reducing to 10.9 and 9.2 in the presence of sodium.⁸

Stability constants (log $K_{\rm ML}$) for complexation with Y³⁺, Ca^{2+} and Mg^{2+} have also been measured (Table 1), each of which is slightly higher than those reported with 1a (dota) (log $K_{\rm ML} = 24.9, 17.2$ and 11.9 respectively^{1,2}). The yttrium complex [Y 2b] - exhibits an invariant ³¹P NMR shift in the pH range 12-2 and monoprotonation occurs only at pH 1.15 (cf. 3.08 for $[Y \cdot 1a]^{-}$). The formation and dissociation of this yttrium complex has been studied using 90Y radiolabelled complex; rapid complexation (monitored by anion-exchange HPLC) occurs above pH 6.5 and radiolabelling yields of \geq 98% may be obtained at ligand concentrations of 5 µmol dm^{-3} (37 °C, 30 min). The complex [90Y·2b] clears rapidly from the body of injected mice and no measurable value was obtained for ⁹⁰Y in the femur (at 24 and 48 h post injection) consistent with the in vivo stability of the complex with respect to 90Y loss (free 90Y accumulates in the bone). Dissociation of 90 Y from the complex was monitored in the pH range 1–2.7, following established methods.⁴ The rates observed (Fig. 2) were comparable with those obtained with [90Y dota] under identical conditions.4

The yttrium complex of **2b** was formed as a *single* diastereoisomer [δ_P (D₂O, pD 6) 44.4] in which the configuration at each of the four stereogenic centres at phosphorus is

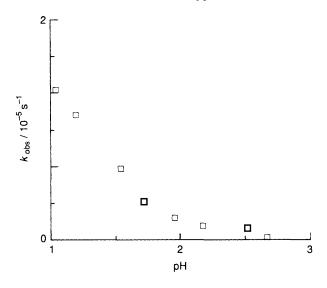


Fig. 2 Rate of yttrium dissociation from $[{}^{90}Y \cdot 2b]$ (310 K, I 0.1 mol dm⁻³)

most likely to be the same, *i.e.* RRRR or SSSS. In this configuration the methyl groups are oriented away from the $[12]N_4$ ring plane. Resolution of this chiral complex is feasible with a suitable enantiomerically pure base.

In order to link **2b** to a protein or oligonucleotide a *C*-functionalised variant is required bearing pendent functionality. Reaction of 2-(4-benzamidobutyl)-1,4,7,10-tetraaza-cyclododecane⁹ with MeP(OEt)₂ and (CH₂O)_n in THF yielded **3** (30%). Acid hydrolysis and reaction with the heterobifunctional coupling agent *N*-succinimido-3-maleimidopropionate (Me₂SO, *N*-methylmorpholine; **3** h; 20 °C)

We thank the SERC and MRC for support.

Received, 6th September 1990; Com. 0/04067C

References

- R. Delgado and J. J. R. Frausto da Silva, *Talanta*, 1982, 29, 815;
 H. Stetter, W. Frank and R. Mertens, *Tetrahedron*, 1981, 37, 767.
- 2 J. P. L. Cox, K. J. Jankowski, R. Kataky, D. Parker, C. Walker, A. Harrison, N. R. A. Beeley, M. A. W. Eaton, A. T. Millican and K. Millar, J. Chem. Soc., Chem. Commun., 1989, 797.
- 3 J. F. Desreux, E. Merciny and M. F. Loncin, *Inorg. Chem.*, 1981, **20**, 987; 1986, **25**, 2646.
- 4 C. J. Broan, J. P. L. Cox, A. S. Craig, R. Kataky, D. Parker, G. Ferguson, A. Harrison and A. M. Randall, J. Chem. Soc., Perkin Trans. 2, 1990, in the press.
- 5 See also: M. K. Moi, C. F. Meares and S. J. de Nardo, J. Am. Chem. Soc., 1988, 110, 6266.
- 6 R. B. Lauffler, Chem. Rev., 1987, 87, 901.
- 7 J. G. Dingwall, C. D. Campbell and E. K. Baylis, J. Chem. Soc., Perkin Trans. 1, 1984, 2845.
- 8 R. Delgado, L. C. Siegfried and T. A. Kaden, *Helv. Chim. Acta.*, 1990, **73**, 140; C. F. G. C. Geraldes, A. D. Sherry and W. P. Cacheris, *Inorg. Chem.*, 1989, **28**, 3336; I. M. Kabachnik, T. Y. Medved, F. I. Bel'skii and S. A. Pisareva, *Izv. Akad. Nauk. SSSR*, *Ser. Khim.*, 1984, 844.
- 9 J. P. L. Cox, A. S. Craig, I. M. Helps, K. J. Jankowski, D. Parker, M. A. W. Eaton, N. R. A. Beeley, A. T. Millican and K. Millar, J. Chem. Soc., Perkin Trans. 1, 1990, 2567.
- 10 J. R. Morphy, R. Kataky, D. Parker, A. Harrison, C. Walker, R. Alexander, M. A. W. Eaton and A. T. Millican, J. Chem. Soc., Perkin Trans. 2, 1990, 573.